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Abstract

Vanilla interest rate derivatives are normally given risk via Taylor Se-
ries expansions of the valuation function. This proves to be simple to
estimate via first difference methods to first order, but computationally
intensive for second order risk (gamma, vanna, volga). Standard meth-
ods to simplify this problem cause significant P&L noise, and impair risk
management of portfolios. While the simplifications are well understood,
the extent to which they impair risk estimation are not. Via a simplifi-
cation of the yield curve specification, dynamics and volatility space, the
severity of this error in benign market moves will be demonstrated and
it is concluded that the most tractable solution is to ”bite the bullet”
and generate risk without simplifications. While this comes at a signif-
icant computational cost, it allows for order of magnitude improvement
in hedging, tractability of traditionally ”difficult” products, and unique
insights into the risk of books.
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1 Introduction

1.1 Risk Generation and Computation Time

Interest rate derivatives risk is generally computed via first difference approach,
which brings significant overhead as it requires rebuilding the yield curve object
and volatility surface object for every risk point calculated. A trade-off has to
be made between computational time and achieving granularity and accuracy
of the higher order risk.
If a portfolio, P , is valued on a yield curve with N inputs and a volatility surface
with V inputs, first order risk (delta and vega) will require N curve rebuilds
and N + V vol surface rebuilds (assuming a skew model in which the implied
volatility is a function of the forward rate). Assume that the time required to
rebuild market data and revalue the portfolio for a bump of either a volatility
surface point or a yield curve point (or any combination) is roughly constant,
T .
The computation time, C1, for first order risk is calculated as

C1 = T (N + V ) (1)

For complete second order risk (gamma, vanna, volga), the computation time
becomes

C2 = T (N + V )2 (2)

and in general for ith order risk

Ci = T (N + V )i (3)

Inputting some reasonable estimates for N , V , and T shows why this is so
expensive even at the second order. It is obviously not feasible to consider any-

N V T C1 C2 C3

130 1000 1 second 19 minutes 14 days 45 years

thing beyond the second order, and even the second order is so computation-
ally intensive as to either require certain simplifications or significant hardware
investment. The specifications for curves continues to compound in complex-
ity (single curve, tenor basis curves, discounting curves, clearing house curves,
CSA curves etc.) Volatility surfaces also continue to increase parameters to
offer better pricing and hedging flexibility. While modern computer systems
could handle full second order risk given market data from 10 years ago, it has
become a figurative arms race to keep up with modern changes to models. (For
fully specified CSA risk,the low-ball estimate of 130 curve points above would
be significantly under-specified).

1.2 Common Simplifications: A Mathematical Descrip-
tion

The most common approach to solving the computation time issue for higher
order risk is to ignore volga and vanna and simplify gamma by assuming the
yield curve moves only in parallel. Approximations for volga and vanna can be
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given via scenario analysis. However this leads to the question of which bumped
volatility surface and yield curve most accurately reflect the move on any given
day.
A curve builder, B is a function that takes a series of yields (deposits, futures,
swaps, forward swaps), Yi, and builds a yield curve. From this yield curve a
function is applied to return discount factors for any tenor:

δ (t) = B (Yi) = B
(
~Y
)

(4)

Any swap rate,S, can be extracted from the function δ(t)

S = f
(
~Y
)

(5)

Notation for derivatives of this function is defined:

∂S

∂Yi
= Si (6)

And to higher order
∂2S

∂Yi∂Yj
= Sij (7)

The Taylor series expansion to second order for a derivative, V = f (Yi), noting
that the change in yields to the curve are given by dri

dV ≈ Vidri +
1

2
Vijdr

idrj (8)

Calculation of the points, Vij , is computationally intensive so the problem is
simplified by defining a dynamic to the curve,

∀ i, j dri = drj (9)

which leads to
Vii =

∑
j

Vij (10)

dV ≈ Vidri +
1

2
Vijdr

idrj = Vidr
i +

1

2
Viidr

idri (11)

A parallel shift assumption may suffice in markets where the term structure is
primarily determined by a single driver but significant errors in risk bucketing
are introduced when this assumption breaks down.
The terms, Vii, are easily computed by parallel shifting all yield curves by 1
basis point and then generating a new delta ladder via first difference methods.
For a curve with N points, this simplification means the computation time for
gamma is reduced from TN2 to TN , an ever more significant gain as curves have
become more complex. Vanna and volga are usually excluded, reducing total
computation time for second order risk by several orders of magnitude. This is
then supplemented by generating several gamma ladders, to try and capture the
non-linearity of gamma via a grid, hoping that there is good offset between the
loss of accuracy locally (relevant on most days) and a slight gain globally (on
the rare high volatility days). Unfortunately this approach still fundamentally
relies on the assumption that the high volatility days are also parallel in nature,
but given computational limitations it seems to be the best currently available
solution.
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2 The Breakdown of Current Second Order Risk

2.1 Simplified Example

For products or portfolios of significant complexity, the above assumptions can
prove to be inadequate. A portfolio hedged using the parallel assumptions can
be seemingly well balanced but produce unexpected risks and valuation changes
when the curve moves in a non-parallel fashion. For example, a simple midcurve,
hedged with spot starting European swaptions carries second order risk that
looks very similar (locally) to a spread option. The spot starting European
swaptions hedge the parallel shift gamma quite well (especially when valued on
a relatively high term correlation), but fail to capture any of the curve gamma
embedded in a midcurve option.
New terminology is now introduced - Traditional Gamma(Γp) is defined as:

Γp =
1

2
Viidr

idri (12)

And complete Gamma (Γ) is

Γf =
1

2
Vijdr

idrj (13)

To highlight the implications of parallel shift gamma and how it can fail, a
simple example is demonstrated. A market consisting of only 3 assets, A, B,
and C1 where:

di = σidWi i = A,B (14)

dWAdWB = ρ (15)

V AR(A) = σ2
A (16)

V AR(B) = σ2
B (17)

C = 2B −A (18)

V AR(C) = σ2
C = σ2

A + 4σ2
B − 4ρσAσB (19)

This model market is further simplified by assuming the implied volatility of
A and B are fixed. A 1 month option on asset C is examined to determine
the percentage of the non-linear P&L of the option on C that is unexplained if
gamma is expressed purely in terms of the primary assets A and B (i.e. using the
assumption of a parallel shift). 1 month optionality is used as gamma risk sta-
bility is inversely proportional to expiry time, hence traditional gamma ladders
should be able to explain a large proportion of the P&L. 2000 daily simulations
were run and the total unexplained P&L under Traditional Gamma (Γp) and
the percent of this error explained by removing the parallel shift assumption
were calculated. The majority of the P&L error was found to be remediated
by eliminating the parallel shift assumption, and it is thus concluded that ex-
tending Traditional Gamma with ladders is not a valuable metric to estimate
P&L.
Changing the hedging parameters and values of ρ, σA, and σB were further
investigated (the simulated data is generated using the same implied volatility

1The structure specified can be best thought of as replicating a 1y1y swaption, where A
and B are the 1 year and 2 year rate, respectively and C is the 1y1y forward rate
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as pricing so the ratio σB

σA
is the main driver). Data on predicted first order

risk changes due to second order risk2 was deemed superfluous, as if the P&L
prediction of the book was lacking this is deemed due to inadequate predictions
for changes in first order risk.

2.2 Test Structure and Results

Two calculations are performed.

Ep =

∑
i

ABS
(
dV i − Γip

)
∑
i

ABS (dV i)
(20)

Ef =

∑
i

ABS
(
dV i − Γif

)
∑
i

ABS (dV i)
(21)

W = 1− Ef
Ep

(22)

where i is an index over each simulation. This metric gives more weight to days
with significant absolute non-linear P&L.
Simulations are run across various volatility ratios and correlations for A and
B, focusing on the level of failure for traditional methods, Ep, and how much of
this error is due specifically to the parallel shift assumption, W . To correct for
issues regarding the usefulness of a full expansion, the simulated summary data
for only the most extreme 2% of days is also returned, extreme being defined as
the days with the largest magnitude non-linear P&L3.

Figure 1: The error in P&L prediction using Traditional Parallel Shift Gamma

2i.e. Delta change due to gamma or vanna
3The extreme 2% of cases shows the value of a full expansion in explaining risk when

markets are most volatile, which are the most important days to have correct risk and P&L.
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Figure 2: The percent of P&L prediction error explained by using the full
Gamma

Figure 3: The error in Profit prediction using Traditional Parallel Shift Gamma

There are several important points to take away from this analysis. Firstly, the
volatility surface shape is a more significant driver of error than the correlation
between points (see Figure 1). Extremely flat (sigmai ≈ sigmaj) volatility
surfaces (if the implied volatility is a good measure of the realized volatility)
will generate dynamics that approximate a parallel shift. In fact, a reduction
in correlation from 99% to 54% is roughly equal to changing the volatility ratio
from 1 to 2. Secondly, almost all of the unexplained P&L is captured by elim-
inating the parallel shift assumption (Figure 2) and this also holds true when
considering only the extreme days(Figure 4).
The implication is that for the majority of market structures, traditional gamma
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Figure 4: The error in Profit prediction using Traditional Parallel Shift Gamma

ladders are found to be wholly inadequate in minimising the largest P&L predic-
tion errors. Traditional gamma ladders may show significant value when dealing
with options expiring over very short horizons (¡1 week) and for options whose
risk is driven by a single yield curve point (ie. not midcurves, spread options, or
European swaptions across a curve built from futures), but are severely limited
in quantifying the dynamics of most risk in a trading book.

3 Results for a Hedged Portfolio

Previously, a single trade was analyzed, specifically with the goal of clarifying
the severity of the problem and the only appropriate solution. The next level
of complexity is then addressed via a modestly hedged portfolio. Specifically, a
portfolio is built whereby,

Ni = −dC
di

(23)

i = A,B,C (24)

with the purpose of analyzing the performance of the parallel shift assumption
when reasonable market hedges are put in place. The hedges are only completely
natural when ρ ≈ 100%, but these can be understood as the set of hedges that
generate a dispersion portfolio. More importantly, for well correlated assets,
this is a natural first order hedge when the volatility surface is relatively flat.
The key results highlight:

• Figure 5 highlights how severe the error regularly is, almost never less
than 100% of the actual PnL.

• Figures 6 and 8 almost all the error could be captured by quantifying the
full gamma, and that gamma ladders are of little value in risk attribution.
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• In steep volatility curves, the error becomes so egregious both in gen-
eral, and at the 2% level, that traditional gamma metrics become almost
meaningless at quantifying portfolio performance.

• Effective risk management for non-linear portfolios should either include
full revaluations or eliminate the parallel shift assumption.

Figure 5: The error in P&L prediction using Traditional Parallel Shift Gamma

Figure 6: The percent of P&L prediction error explained by using the full
Gamma
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Figure 7: The error in Profit prediction using Traditional Parallel Shift Gamma

Figure 8: The error in Profit prediction using Traditional Parallel Shift Gamma

4 Conclusion

A simplified set of examples has shown the pitfalls of assuming a parallel shift
when calculating second order risk. This is especially marked if the volatility
surface is steep, or if used as an estimate of extreme outcomes (ie. VaR or
Expected Shortfall) and finally, if the portfolio has reasonable market hedges
applied. The performance in an absolute sense worsens when correlations break
down, as long as the vol ratio is above a critical value, which is determined by the
relationship between A,B, and C. However, the sensitivity to correlation is not
universal, and in some well hedged portfolios, poor correlation leads to a lower
relative error. Most importantly when calculating Value-at-Risk (and similarly
derived Expected Shortfall calculations), in a portfolio that is modestly well
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hedged, it is crucial to remove the parallel shift assumption, as, this assumption,
combined with the hedged nature of the book leads to severe errors in P&L
prediction.

10


	Introduction
	Risk Generation and Computation Time
	Common Simplifications: A Mathematical Description

	The Breakdown of Current Second Order Risk
	Simplified Example
	Test Structure and Results

	Results for a Hedged Portfolio
	Conclusion

